
InSAR Scientific 
Computing Environment 
Eric Gurrola1, Paul A. Rosen1, Gian Franco Sacco1, Walter 
Seliga1, Howard Zebker2, Mark Simons3, David Sandwell4 

1Jet Propulsion Laboratory, California Institute of Technology 
4800 Oak Grove Dr 

Pasadena, CA 91109 USA 
2Stanford University 

3California Institute of Technology 
4Scripps Institution of Oceanography 

 

Abstract⎯We have developed the main components of a new 
flexible and extensible computing environment for geodetic 
image processing for Synthetic Aperture Radar (SAR) sensors to 
enable scientists to reduce measurements directly from Level-0 or 
Level-1 radar data up to Level-3 data products. The  
Interferometric SAR (InSAR) Scientific Computing Environment 
(ISCE) can process data from the ALOS, ERS, EnviSAT, Cosmo-
SkyMed, RadarSAT-1, RadarSAT-2, and TerraSAR-X 
platforms; with its flexible design, it can be extended with 
raw/meta data parsers to enable it to work with radar data from 
other platforms. The NRC Decadal Survey-recommended 
DESDynI mission would deliver directly to the science 
community data of unprecedented quantity and quality, making 
possible global-scale studies in climate research, natural hazards, 
and Earth's ecosystem. Applied to a global data set such as from 
DESDynI, ISCE would enable a new class of analyses at time and 
spatial scales unavailable using current approaches. 

ISCE is an accurate, extensible, and modular processing 
system that i) enables multi-scene analysis by adding new 
algorithms, ii) permits user-reconfigurable operation and 
extensibility, and iii) capitalizes on codes already developed by 
NASA and the science community. The framework incorporates 
modern programming methods, including rigorous 
componentization of processing codes, abstraction and 
generalization of data models, and a robust, intuitive user 
interface with graduated exposure to the levels of sophistication, 
allowing novices to apply it readily for common tasks and 
experienced users to mine data with great facility and flexibility. 
The framework is designed to easily allow user contributions, 
creating an environment that can extend the framework into the 
indefinite future. 
 

I. INTRODUCTION 

The objectives of the InSAR Scientific Computing 
Environment (ISCE) are to develop an open, modular, 
extensible InSAR computing environment for the research 
community.  The environment incorporates state-of-the-art, 
highly accurate algorithms to facilitate InSAR processing for 
non-experts and experts alike. To service the community and 
promote use, the project will deliver documented algorithms, 
formats and interfaces.  The specific goal is to create a code 
suite that the InSAR community embraces and grows with.  
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The goals of ISCE are a direct response to the priorities set 

by an international community of radar processor developers 
and users as determined by two NASA sponsored InSAR 
workshops, one convened in 2008 at Stanford University and 
the other in 2011 at the Scripps Institution of Oceanography.  
The goals of the 2008 workshop were to assess the strengths 
and weaknesses of the existing InSAR processing packages at 
the time, define the capabilities of the next-generation 
processors required by the user community, and set the 
standards and structure for new InSAR processor 
development.  The top requirements for the next generation 
radar processing package coming out of the 2008 workshop 
were the following: (1) precise and well-characterized 
products; (2) flexible and extensible modular code to 
encourage modification and improvement by the user 
community; (3) and a comprehensive set of user 
documentation.   

The NASA Earth Science Technology Office funded the 
ISCE project through the Advanced Information Systems 
Technology (AIST) program to implement these 
recommendations.  The approach our multi-institutional team  
took was relatively straightforward for a software 
development project, but perhaps more structured than a 
typical research code development.  We approached the 
development by applying modern software system engineering 
techniques and tools for configuration management and 
maintenance. We first collected community-based 
requirements for InSAR processing methods and generalized 
data models, primarily through the 2008 workshop final 
report.  We then used these requirements to define an object-
oriented framework.  With the framework in place, we 
populated it with processing modules.  Along the way, we are 
creating documentation of the framework, modules, and use 
cases. 

II. THE ISCE ARCHITECTURE 

The ISCE architecture was driven by the following key 
design principles: 

1. Preserve the vast expertise and testing currently 
encoded in Legacy Software 

2. Make that Legacy Software more lean in terms of the 
number of auxiliary tasks it needs to do (such as self 
configuration and I/O configuration).   

3. Build modern object oriented structures around and 
behind the legacy code to manage that code and push 
rather than pull user configuration onto that code 
before executing that code 

4. Implement common functions and services such as 
I/O through APIs to allow their implementations to 
change and to allow for user configuration and 
selection of those functions at run time 

5. Build in polymorphism mechanisms to allow user 
selections to alter the implementations of major 
processing steps and common functions.  	
  

At the core of the ISCE architecture is two legacy InSAR 
processing packages: ROI_PAC (Rosen et al., 2004) and 



STD_PROC (Zebker et al., 2010). Both of these software 
packages are primarily written in Fortran – mostly using the 
Fortran 77 version of the language, with some of the 
transitional features leading up to Fortran 90 such as structures 
and occasionally dynamic memory allocation – with some of 
the programs written in C and with scripts written in Perl 
(ROI_PAC) or Python (STD_PROC). ROI_PAC was initially 
developed over a decade ago and has been used extensively by 
the science community to process InSAR data from several 
different international space borne radar platforms such as 
ERS, EnviSAT, RadarSAT-1, JERS, ALOS, and TerraSAR-X.  
STD_PROC is currently being developed at Stanford 
University and is based on advances in the processing 
algorithms that came from processors developed for SRTM 
and UAVSAR.  Although STD_PROC is new, we refer to it 
along with ROI_PAC as legacy code because of its pedigree, 
and because like ROI_PAC it is received as domain expert 
software whose functionality we wish to preserve. Also both 
are written in a similar style that is very effective at 
accomplishing the processing steps but neither easy for non-
experts to use nor very flexible or extensible for expert 
developers to work with.  The ISCE architecture seeks to 
inject some modern software principles that allow for easier 
use and greater flexibility and extensibility.   
Components 

To accomplish these goals, we componentize the legacy 
code by surrounding them with structures that deliver services 
to the legacy programs, users and developer. The services 
replace legacy code interactions with the external world that 
are handled using mostly primitive language features. The 
structures that deliver these services are quite different, 
requiring legacy code modifications to add new “wiring” to 
receive those services.  

 Figure 1 shows the architecture of a component that has an 
embedded legacy core.  The processing components are built 
from framework components and properties through either 
class inheritance or composition. Configuration and control 
parameters flow from a controlling or driving application at 
the top into the component initialization method.  The 
configuration and control parameters are derived from user 
inputs, either from the command line or from input files, and 
defaults defined in preferences files or within the application 
itself.  The component itself may also define defaults for 
parameters.  Defaults can always be overridden by user inputs. 

The components, applications, and other support software 
involve a mixture of different programming languages and 
styles. This multilingual structure requires proper use of 
application program interfaces (APIs) for effective 
cooperation among languages. The ISCE architecture 
preserves legacy radar processing software at the core of each 
of our components, as shown in Figure 1. The component core 
is not the raw Fortran program, but rather the essential 
processing engine with data flow execution management 
removed.  We use C/C++ as the intermediary between Python 
and Fortran because there is a standard Python API that allows 

Python and C programs to interact. The C intermediary is 
referred to as a binding.  

A component by itself does not actually do anything.  It 
must be instantiated in another type of component called an 
application that has the responsibility of collecting the user 
inputs and of managing its components from their 
initialization to the flow of data through them to their 
finalization.   
Software 

The structure of the ISCE software system is shown in  
Figure 2.  At JPL, the software configuration is managed using 
SVN, and “checking out” the software yields the directory 
structure shown in the figure.  To build the software, the user 
runs SCons, a Python-based build system, rather than the 
“configure; make” method.  SCons works well building code 
written in multiple languages, and is essentially Python-
programmable to handle a range of build situations can occur 
on disparate operating system configurations.   

The mainline ISCE applications and components are 
contained under the Applications and Packages directories. 
Packages are collections of logically related Components, 
Legacy Cores, and other support software.  Current Packages 
include: iscesys, which contains the ISCE system or 
framework components and properties as well as several APIs; 
isceobj, which contains class definitions for several objects 
used by the components; mroipac, which contains the 
recasting of ROI_PAC into components; and stdproc, which 
contains the recasting of STD_PROC into components.   
Figure 2 shows a branch called Contrib, where contributed 
software can be located without intermingling with the ISCE 
distribution. 
Polymorphism 

An ISCE developer or a user will be able to add software 
objects to the framework after the framework is built and user 

 
 Figure 1. Architecture of a component 



inputs or default settings can select the new or the old objects 
as long as the objects adhere to the correct interfaces.  This 
dynamic alteration of the software for a processing run is 
possible using object-oriented polymorphism design patterns 
and greatly enhances the flexibility and extensibility of ISCE. 
We are allowing for two types of polymorphism: (1) facility 
polymorphism where major components may be morphed at 
run-time; and (2) a plug-in type of polymorphism where lower 
level, common functions such as implementations of fast 
Fourier transforms (FFTs) may be selected across the board at 
run-time. Facilities define a task and an interface that are 
implemented by a component.  Registering a Component as a 
Facility indicates the Component as the default Component to 
implement the Facility but also alerts the Application to allow 
the User to specify an alternate Component at runtime to 
implement the Facility. 
Provenance 

The ability to log and query the pedigree of a particular 
piece of processed data, known as “provenance,” is important 
to the community. Provenance allows users to keep track of:  
the versions of applications, components, and other software 
that were used to produce a data product; the configuration 
parameters used to initialize those applications and 
components; the input data and other output data products at 
the time of creation of the data product of interest.  
Provenance enables an investigator to explore data by using 
different versions of the software or iteratively tweaking 
parameters, while keeping a record of what was done at every 
step.  This record allows the user or colleagues to reproduce 
results exactly, by sharing scripts with the community, 
facilitating reproducible collaborations and publications.  

ISCE supports provenance through database management 
and logging of processing steps and meta-data at each step of 
the processing chain.  Given the python-based object-oriented 
methods in ISCE, the code lends itself to being used within 
software packages with higher levels of sophistication that 
provide provenance capability as well.  For example, several 
GUI interfaces, such as VisTrails, have complete provenance 
management, and easily accept python applications and plug-
ins as modules.  This effectively extends the ISCE utility as a 
scientific tool with essentially no effort. 

 
III. DESCRIPTION OF THE API SOFTWARE 

The ISCE framework contains various elements that support 
the ISCE component architecture.  We have coded, 
documented, and tested the key framework Application 
Program Interfaces (APIs) that allow us to control processing 
flow among ISCE modules.  These APIs are the following:  
Image API, Control API, and StdOE API.  
Image API 

The image API provides a set of library functions that 
provide the legacy software and new programs developed by 
users with a reliable and versatile way of performing input and 
output operations on images. The image API consists of a set 
of C++ classes that contain an abstraction of a real world 
image as well as concrete methods to access data from sources 
(such as, but not limited to, files on disc) and a memory buffer 
to hold a given portion of an image that can be passed between 
the C++ and Fortran programs.  The C++ classes allow for 
very general and flexible configuration of the objects 
instantiated from them without specific regard for the types of 

 
Figure 2.  The structure of the ISCE source directory. 

 



images and memory buffer specifications currently in the 
Fortran programs of ROI_PAC and STD_PROC. 

We exploit class inheritance mechanisms, so that new data 
accessor methods can be layered on top of those currently 
available without rewriting code that currently works.  The 
code has built-in flexible methods for sequential access to full 
lines of data, random access by line number, and single pixel 
access,  supporting a number of band interleaving schemes. 
The Image API handles efficient conversion from one scheme 
to another on input and output. Machine dependent internal 
representations of the numerical values are converted on the 
fly so that data files created on one machine can be used in our 
software without first creating a new file conforming to the 
internal representation of binary data on the machine that is 
running the ISCE software. The generality of the Image API 
permits fast and efficient cached I/O.  
Control API  

Generally speaking, modules contain parameters or 
attributes that need to be set appropriately before they can 
perform their function. The control API is a set of classes, 
features and methodologies providing an easy, reproducible, 
extensible and reconfigurable way to pass data, and to set and 
examine attributes through set and get methods. 

All ISCE modules inherit from a ComponentInit base class, 
which allows the initialization of the parameters of the 
subclass that inherits it by passing an initializer object to it. 
The ISCE framework provides a set of default initializers that 
permit initialization from file, from a dictionary (an object 
consisting of a set of (key,value) pairs) of from another object. 
Expert users could provide their own initializers, as long as 
they conform to the architecture specifications.  

The ComponentInit class provides a set of methods to allow 
the user to explore how to use a component, to debug his 
usage of the component, and to document the state of the 
control parameters through the following built-in capabilities: 
(1) determine which variables in the module must be set by the 
controlling program (i.e., those parameters that have no valid 
default value); (2) determine which variables have default 
values and what those default values are so that the user may 
have the option to override the default values; and (3) render 
the state of the component to a configurable destination such 
as to a file or to standard output (i.e., dump the variables and 
associated documentation of an object to a specified 
destination that may be used and stored by the user to debug a 
component or to document the provenance information on the 
component’s state).   

Another component of the Control API is the Checkpoint 
class.  The process of check-pointing allows the user to save 
the state of the system at a given point during the program 
flow, such that the program can be resumed at a given 
checkpoint without having to recompute the previous stages. 
This feature is important in the event that the process was 
interrupted due to an anomaly in the processing or the data, or 
because the user chooses to use a different set of processing 
parameters for processing past a certain point.  For example, a 
user may prefer heavier filtering of the interferogram than the 

default after seeing the quality of the default result.  For this, 
there is no need to return to any processing done prior to the 
formation of the interferogram. 
StdOE API 

An essential element of any program suite is the ability to 
print informative messages about the status of the processing 
(e.g. percent completion, derived parameters that may be of 
interest to the user, etc.) and any error messages that occur.  In 
conventional programming, particularly, in Fortran, coders 
insert “write” statements into their code that are sometimes 
compiler dependent, such that when compilers change, all the 
code needs to be updated.  To avoid such tight and brittle 
connection of logging messages to the code elements, we have 
created a logging API we call StdOE for “Standard Output and 
Error.” The StdOE consists in a C++ static class used for 
reconfigurable standard output and error.  With this API, it is 
possible to choose destinations for standard output and 
standard error messages.  For example the user might choose 
to select the terminal window for both of these output streams 
or instead send them to separate files, to a network socket, or 
to the input of some other process. 
 

IV. DESCRIPTION OF THE NEW CORE PROCESSING SOFTWARE 
Repeat pass InSAR forms topographic and displacement 

maps from radar data collected at two different times by a 
platform such as an orbiting spacecraft.  The platform collects 
data from the same location on Earth at times t1 and t2 as 
illustrated in Figure 3.  The spacecraft position at t2 is 
separated from its position at t1 by a vector B, which is the 
interferometric baseline.  The typical processing flow is as 
illustrated in  Figure 4. InSAR processing depends on precise 
knowledge of the position and velocity of the platform at the 
time of observation of a pixel at a given range and Doppler 
relative to the platform.   

The STD_PROC processor at the core of ISCE preserves 
the accuracy of its data products by taking advantage of the 
improved accuracy of orbit determination now available and 
implementing all of the code in a uniform geometric 
framework (Zebker et al., 2010).  This approach, based on 
well-known motion compensation techniques, also facilitates 
analysis of a time series of many observations of a particular 
location on Earth by its use of a motion-compensated geodetic 

 
 
 
Figure 3. Repeat pass InSAR 



coordinate system rather than the traditional range/Doppler 
coordinate system specific to a given observation, used by for 
example ROI_PAC.  The coordinate system, referred to as 
SCH (in which S is the local along track direction, C is the 
cross track direction, and H is the height above the 
approximating sphere), is based on a local spherical 
approximation of the ellipsoidal Earth.  The equations 
implemented in the processor are simplified by use of a 
spherical earth and a corresponding circular approximation of 

the platform orbit. Figure 5 illustrates the motion 
compensation geometry, showing the correspondence of an 
image pixel location, actual satellite position and the assumed 
reference position on the circular orbit.  In this approach, the 
direction from the satellite to a point on the Earth is 
determined through the estimated Doppler centroid.  Using the 
motion of the satellite on its orbit relative to the reference 
track, the position of the satellite is compensated along this 
direction back to the reference track as a range correction.  A 
corresponding phase correction is also applied. The equations 
encoded in STD_PROC and hence ISCE are developed in 
detail in Zebker et al. (2010) and Gurrola et al (2010). 

 
V. STATUS OF ISCE DEVELOPMENT 

The AIST-sponsored ISCE project has completed two 
years of development, with one year remaining. The team to 
date has succeeded in developing all the basic elements of the 
framework as described in Figs 3 and 5; essentially all the 

standard ROI_PAC algorithm functionality now exists, but in 
a modern framework that will serve as a springboard for added 
capability and community involvement.  

To begin engaging the community, a follow-on to the 
2008 workshop was held in March 2011 at Scripps Institution 
of Oceanography.  The goals of the 2011 workshop were to 
compare and validate the accuracy and performance of the 
various non-commercial InSAR processing packages, both 
legacy and new, and to generate feedback and suggestions for 
further developments. Products from four different InSAR 
packages, including ISCE, were compared for several 
challenging data sets and recommendations for further 
comparisons were made, including incorporation of a few 
commercial InSAR packages and simulated data to isolate 
differences in results found between the different packages.  
ISCE did well in terms of accuracy, speed, and ease of use. 
Some found it difficult to install.  The use of Python and the 
gcc requires a self-consistency to the development 
environment that many users do not understand.  One of the 
key actions for the ISCE team is to provide more complete 
descriptions of what constitutes a self-consistent environment, 
and provide the tools and information for a user to easily 
create one.  One of the top action items from the workshop 
was to make ISCE available for rapid and wide distribution, 
indicating that the development is of interest to the 
community.  

 
VI. CONCLUSION 

There will be an enormous amount of radar data available to 
the research community in the coming years as more and more 
space borne international radar systems are launched and the 
data become available for use, either in real time or from 
historical archives.  With the upcoming launch of the 

 
 
Figure 5.  Motion compensation geometry.  The actual 
satellite position is indicated at coordinate (S0,C0,H0) and 
its assigned position on the circular reference orbit is at 
(S,0,H) as determined from the look direction to the 
imaged pixel at P. 

 
Figure 4. InSAR Processing flow. 



European Sentinel-1 spacecraft alone, there will be a great 
deal of data that will be useful for repeat pass interferometric 
SAR processing.  Current tools are nearly all geared to 
examining individual frames or areas, and are not general 
enough or generalizable enough to allow researchers to 
explore the richness of the data in space and time.  The ISCE 
framework and radar processing software associated with it, 
described in this paper, are designed to be extensible and 
flexible enough to allow the researcher to ask questions and 
formulate new ways to answer them with relative ease in the 
environment. 
We have released the software for beta testing to a limited 
number of users and plan to make wider releases in the 
coming year as we work through the process of obtaining a 
suitable license for open release to the research community.  
We anticipate a documented and usable set of code in the 
coming year, with ample time for community feedback, bug 
fixes, and refinement during the remainder of the funded AIST 
development. And of course, we anticipate that the code will 
be sufficiently useful, well documented, and accessible for the 
ISCE to far outlive the duration of the AIST program. 
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